X iv : m at h - ph / 0 10 50 21 v 1 1 5 M ay 2 00 1 Analysis of the Newton - Sabatier scheme for inverting the fixed - energy phase shifts ∗

نویسنده

  • A. G. Ramm
چکیده

It is proved that the Newton-Sabatier (NS) procedure is not a valid inversion method, in the following sense: 1) it is not possible to carry this procedure through for the phase shifts corresponding to a q ∈ L 1,1 such that ∞ 0 rq(r)dr = 0, where L 1,1 := {q : q = q, ∞ 0 r|q(r)|dr < ∞, 2) the ansatz (*) K(r, s) = ∞ l=0 c l ϕ l (r)u l (s), ∞ l=0 |c l | < ∞, similar to the one used in the NS procedure is incorrect: the transformation operator corresponding to q ∈ L 1,1 , ∞ 0 rq(r)dr = 0, does not have kernel of the form (*), 3) if one starts with any q ∈ L 1,1 , which is not analytic in a neigborhood of (0, ∞), calculates the corresponding phase shifts, and applies the NS procedure, then, assuming that this procedure is applicable, one does not get the original potential q(r). For example, this is the case if q(r) is compactly supported, and 4) the set of potentials v ∈ L 1,1 , that can possibly be obtained by the NS procedure, is not dense in the set of all L 1,1 potentials in the norm of L 1,1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 1 Analysis of the Newton - Sabatier scheme for inverting fixed - energy phase shifts

Suppose that the inverse scattering problem is understood as follows: given fixed-energy phase shifts, corresponding to an unknown potential q = q(r) from a certain class, for example, q ∈ L 1,1 , recover this potential. Then it is proved that the Newton-Sabatier (NS) procedure does not solve the above problem. It is not a valid inversion method, in the following sense: 1) it is not possible to...

متن کامل

ar X iv : m at h - ph / 0 10 50 19 v 1 1 5 M ay 2 00 1 Extension of a Spectral Bounding Method to Complex Rotated Hamiltonians , with Application to p 2 −

We show that a recently developed method for generating bounds for the discrete energy states of the non-hermitian −ix3 potential (Handy 2001) is applicable to complex rotated versions of the Hamiltonian. This has important implications for extension of the method in the analysis of resonant states, Regge poles, and general bound states in the complex plane (Bender and Boettcher (1998)).

متن کامل

ar X iv : m at h - ph / 0 50 50 33 v 1 1 0 M ay 2 00 5 The ∂̄ - approach to approximate inverse scattering at fixed energy in three dimensions

Abstract We develop the ∂̄-approach to inverse scattering at fixed energy in dimensions d ≥ 3 of [Beals, Coifman 1985] and [Henkin, Novikov 1987]. As a result we propose a stable method for nonlinear approximate finding a potential v from its scattering amplitude f at fixed energy E > 0 in dimension d = 3. In particular, in three dimensions we stably reconstruct n-times smooth potential v with s...

متن کامل

Analysis of the Newton - Sabatier scheme for inverting fixed - energy phase shifts

Suppose that the inverse scattering problem is understood as follows: given fixed-energy phase shifts, corresponding to an unknown potential q = q(r) from a certain class, for example, q ∈ L 1,1 , recover this potential. Then it is proved that the Newton-Sabatier (NS) procedure does not solve the above problem. It is not a valid inversion method, in the following sense: 1) it is not possible to...

متن کامل

. pl as m - p h ] 1 4 M ay 2 00 5 Two - fluid tokamak equilibria with reversed magnetic shear and sheared flow 1

X iv :p hy si cs /0 50 51 01 v1 [ ph ys ic s. pl as m -p h] 1 4 M ay 2 00 5 Two-fluid tokamak equilibria with reversed magnetic shear and sheared flow 1 G. Poulipoulis, G. N. Throumoulopoulos, H. Tasso University of Ioannina, Association Euratom Hellenic Republic, Section of Theoretical Physics, GR 451 10 Ioannina, Greece Max-Planck-Institut für Plasmaphysik, Euratom Association, D-85748 Garchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001